Discussion of:
"Tail Risk Premia and Return Predictability"
by
T. Bollerslev, V. Todorov, L. Xu

Caio Almeida
Getulio Vargas Foundation
International Workshop in Financial Econometrics
Natal, October 14, 2013
Tail Risk, Tail Risk Premia and Predictability

- Variance is a priced risk factor.
 - Variance Risk Premium (VRP) predicts market future returns (Bollerslev et al. 2009).

- The VRP can be decomposed into diffusive, small-jumps and large-jumps risk.

- This paper: Extracts the large-jump tail risk premium from S&P 500 market based on BT (2013).
 - Short-maturity OTM options to estimate two time-varying parameters for the risk-neutral Levy measure for jumps.

- The jump tail premium is an important component of VRP.
 - Most of VRP’s forecasting power due to jump premium.

- It significantly forecasts future market, size, book to market, momentum and industry portfolio returns.
A closer look at this paper

- Given the stochastic evolution of the price X of a risky asset:
 \[
 \frac{dX_t}{X_t} = a_t dt + \sigma_t dW_t + \int_\mathbb{R} (e^x - 1)(\mu(ds, dx) - dt\nu_t^P(dx)) \quad (1)
 \]

- And its return quadratic variation over an interval $[t, t + \tau]$
 \[
 QV_{[t, t+\tau]} = \int_t^{t+\tau} \sigma_s^2 ds + \int_t^{t+\tau} \int_\mathbb{R} x^2 \mu(ds, dx) \quad (2)
 \]

- Absence of arbitrage guarantees the existence of at least one risk-neutral measure Q under which:
 \[
 \frac{dX_t}{X_t} = (r_t - \delta_t) dt + \sigma_t dW_t^Q + \int_\mathbb{R} (e^x - 1)(\mu(ds, dx) - dt\nu_t^Q(dx)) \quad (3)
 \]

- The VRP is the difference between the expected quadratic variation under the objective and risk-neutral measures:
 \[
 VRP_{t,\tau} = \frac{1}{\tau} (E_t^P (QV_{[t, t+\tau]}) - E_t^Q (QV_{[t, t+\tau]})) \quad (4)
 \]
A closer look at this paper: continues...

- The VRP can be decomposed into diffusive and jumps risk, and for short time-intervals (τ close to t) only the jump premium matters.

\[
\lim_{\tau \downarrow t} VRP_{t,\tau} = \int_{\mathbb{R}} x^2 (\nu_P^t(dx) - \nu_Q^t(dx)) + \text{variance jump premium} \quad (5)
\]

- This paper assumes that there is no variance jump premium.

- Interested in tail jump premium:

\[
LJV^Q_{[t,t+\tau]} = \int_{t}^{t+\tau} \int_{x <- k_t} x^2 \nu_Q^s(dx)ds \quad (6)
\]

- Now, further assuming that P-jump tails are orders of magnitude smaller than Q-jump tails:

\[
LJP_{t,\tau} - RJP_{t,\tau} \approx -\frac{1}{\tau} E_t^Q \left(\int_{t}^{t+\tau} \int_{x <- k_t} x^2 \nu_Q^s(dx)ds \right) \quad (7)
\]

- Obtains a model-free proxy for investors fear index.
A closer look at this paper: continues...

- Semi-parametric identification of the jump-premium via ν_t^Q.

- More general than...
 - parametric studies like Pan (2002), Broadie et al. (2007),
 - semi-parametric identification of Todorov (2010)

- New important feature: Probabilities of having new jumps are time-varying and not time-homogeneous across different jump sizes.

- Show that new feature improves forecasts of future market returns and other equity returns.

- Question: Why to eliminate variance jump premium? Harder to identify but potential to increase predictability.
An Asset Pricing consistency perspective

- Results based on the existence of a risk-neutral probability Q under which tail risk premia is extracted.

- In any pricing model, factors that drive risk premia are precisely the factors that drive the variance of the SDF.

- Therefore, tail risk premia extracted from S&P 500 data should be a priced factor in the cross section of stocks.

- The returns of stocks within this economy should satisfy:

$$E(R_i) = R_f + \beta \lambda + \beta_{TR} LJV + \epsilon$$

- Running a cross-section regression including Fama and French factors, $VRP - LJV$, and LJV as risk factors:

- The exposure to LJV (β_{TR}) should appear significant and contribute to a better explanation of expected returns.
Misspecification of the nonparametric model

- Dependence of log-price option pricing errors across different strikes might generate biased results for α_t and ϕ_t.

- Hard to imagine that there won’t be strong error dependence across (close) strikes.
 - Two stage estimator where first estimate α_t and use $\hat{\alpha}$ to estimate ϕ_t should be affected by cross-sectional error dependence.

- Tests for such possibility of bias?

- Could estimate Pan’s (2002) or Andersen, Fusari and Todorov (2013) model with available option panel to obtain option pricing errors.

- Test for dependence on these errors.

- Design Monte Carlo experiment or bootstrap errors to obtain distribution of the estimators.
Multiple Risk-Neutral Measures (RNMs) and identification assumptions

- Market is incomplete since jumps can’t be hedged: Infinity of RNMs. Which one to choose?

- Bollerslev and Todorov (2013) uniquely identify RNM using cross-section of OTM options.

- Semi-parametric jump intensity process:

 \[\nu_t^Q(dx) = \phi_t^+ e^{\alpha_t^+ x} 1_{\{x > 0\}} + \phi_t^- e^{-\alpha_t^- |x|} 1_{\{x < 0\}} dx, |x| > k_t \]

- From Girsanov’s theor.: \(\nu_t^Q(dx) = Y(X)\nu_t^P(dx) \), with \(Y \) strictly positive charact. jump premium.

- This paper free of \(P \)-dynamics: magnitude of risk-neutral tails much bigger than objective ones.

- If necessary to model \(P \), similar structure for intensities \(\nu_t^Q,\nu_t^P \) restricts risk premia.

- How to generalize Bollerslev and Todorov (2011)?
Can we obtain return predictability with alternative strategies involving options?

- Vix reflects the floating leg of a variance swap under certain restrictions for the S&P 500 dynamics.

- Martin (2011) proposes a simple variance swap and corresp. index SVIX, robust to jumps in S&P dynamics.

- Moreover, SVIX represents model-free lower bound for the equity premium.

 - The difference between VIX and SVIX reflects a trade in skew highly correlated with fear index of BT (2011).

- Suggest comparing predictability results of LJV with those from SVIX, and skew swaps.

- Comparison will indicate the importance of using their methodology as opposed to traded strategies.
Predictability, Option Data and Tail Jump Premia

- Options contain strong information about volatility and jump risk premia (Bates, 2000 Pan, 2002).

- In especial OTM options contain important information about tails behavior.

- Question: How much of the predictability comes from the new nonparametric techniques for tail estimation when compared to other alternatives that use OTM options?

2. Use short-dated option returns to estimate nonparametric RND and calculate variance of observations that exceed a threshold to represent tail jump premium.

Compare predictability obtained with theirs.
On the increasing predictability of LJV with horizon

- Jumps have a short-horizon effect in the way they affect the volatility of prices (fast mean reversion).

- Intuitively we could expect jumps to affect short horizon returns.

- However, compensation for jumps (LJV) has better return predictability for longer horizons.

- How to reconcile long-horizon predictability of LJV with fast mean reversion of volatility caused by jumps?

- Jump premium should be a persistent process.

- This persistence can be estimated using the parametric structure of LJV: \(LJV_t = g(\phi_t, \alpha_t) \).

- Or fitting an AR model to LJV. AR coefficient expected to be high.
Robustness Predictability Tests for Jump Premia

- Following Goyal and Welch (2008) testing for out-of-sample predictability should give stronger support for the tail risk premia measure as a predictor.

- Also, including other variables that can potentially behave similarly to LJV on multi-variate regressions: VIX, SVIX, VIX-SVIX