Discussion of:
”Hedging in Fixed Income Markets”
by
A. Malkhozov, P. Mueller, A. Vedolin and G. Venter

Caio Almeida
Getulio Vargas Foundation

Linking the Mortgage and Bond Markets

- Simple equilibrium term structure model that links the mortgage and bond markets.

- Key ingredient comes from financial intermediaries optimization problem: Market prices of bond risks are a linear function of mortgage duration.

- Theoretical model provides important testable implications:
 - Bonds yields, and bond excess returns should be explained by mortgage duration, and bond volatility by convexity.

- Nice empirical results.
A No-Arbitrage Perspective

- Given a probability space \((\Omega, F, P)\), we have a one factor Vasicek (1977) model augmented with a Duration factor.

\[
dr_t = \kappa (\theta - r_t) dt + \sigma dB_t
\]
\[
dD_t = -\kappa D_t dt + \eta_Y \sigma \frac{B(\bar{\tau})}{(1 - \eta_Y C(\bar{\tau}))} dB_t
\]

- Only one Brownian Motion drives both factors.

- Absence of arbitrage implies the existence of an equivalent risk-neutral measure \(Q\) under which bond prices are given by:

\[
P_t^{\tau} = E^Q \left[e^{-\int_t^{t+\tau} r_u du} \right]
\]
No-Arbitr. Perspective: Why Do Yields Depend on D_t?

- Model Result: Bond yields are affine on the two factors:
 \[y_t^\tau = A(\tau) + B(\tau)r_t + C(\tau)D_t \]
 (4)

- Why do yields y_t^τ depend on D_t if the short-rate r_t and its dynamics are not functions of D_t?

- From a no-arbitrage perspective, two-factor affine model with restricted market prices of risk ($\lambda_t = -\alpha \sigma_y D_t$).

- Applying Girsanov’s theorem note that the risk-neutral short-rate dynamics depends on D_t:
 \[dr_t = [\kappa(\theta - r_t) - \sigma \alpha \sigma_y D_t]dt + \sigma dB_t^Q \]
 (5)

- Distinct from usual no-arbitrage affine models where the short-term rate is linear in all risk factors.
Two model ingredients generate two additional testable empirical implications (not verified in the paper).

1. Innovations of the duration factor D_t and the short-rate r_t are the same.

2. Mortgage duration D_t and short-rate r_t are the only factors driving yields dynamics and spanning the cross section of yields.

 Therefore, duration D_t should be spanned by bond yields y_t^τ.
Empirically Testable Points

1. Innovations of duration factor and short-rate should be highly correlated.
 - Suggest running a Svensson model on bond yields to estimate the short-term rate.
 - Estimate AR(1) processes for r_t and D_t.
 - Estimate correlation between innovations.
 - In the data, correlation bet. innovations of D_t and $y_{0.5}$ is 26.7%.

2. The cross-section of yields should span the duration factor.
 - In the paper: Regression of duration on 5 PCs, but do not report the R^2.
 - Model suggests a high R^2, while I found $R^2 = 0.35$.
 - Existence of information on the mortgage market not capture by bond yields. Unspanned duration?
Model Reconciliation with Term Structure Movements

- Usually three sources of risk (PCs) necessary to capture variability on yields (Litterman and Scheinkman, 1991).

- Model presents two factors with one unique source of risk: Incapable of endogenously capturing yields dynamics.

- Suggestion: Slightly more general dynamics for D_t with extra independent source of (Brownian) risk.

\[dD_t = -\kappa_D D_t dt + \eta_y (dy_t^\tau - E_t(dy_t^\tau)) + dB_t^2 \] \hspace{1cm} (6)

- Keeps economic motivation: Duration dynamics still depends on innov. of long-term yield.

- Easy to solve: Model keeps the same structure but now...

- Two-factor affine Gaussian model with restricted market prices of risk and two sources of risk.
Unspanned Volatility versus Unspanned Duration

- Duration is not spanned by the short-term rate but enters on its risk-neutral dynamics and is spanned by bond yields.

- Similarly in USV models (Collin-Dufresne and Goldstein, 2002) volatility is not spanned by the short-term rate and by bond yields but enters in the short-rate dynamics.

- Although the two models have apparently a similar structure the model in this paper generates a complete bond market while USV generates an incomplete market.
In the model, the risk-neutral mean-reversion rate of D_t is\[
\kappa^O_D = \kappa_D - \alpha \eta_y (\sigma_y^\tau)^2\]
where α is the RA coefficient.

If we have to restrict κ^O_D to be positive this imposes an additional limit to the risk-aversion coefficient α.

Since σ_y^τ is endogenous, it would be interesting to see if this restriction is binding for reasonable sets of parameters.