Discussion on

“How useful are no-arbitrage restrictions for forecasting the term structure of interest rates?

By Raffaella Giacomini and Andrea Carriero

Caio Almeida
Graduate School of Economics
Getulio Vargas Foundation

VIII Encontro Brasileiro de Finanças,
Ibmec, Rio de Janeiro, August 2008
Summary of the paper

• Propose a way to test the importance (for out-of-sample forecasting purposes) of imposing restrictions to an econometric model.

• The importance of restrictions is tested by the optimal weight on a convex combination of two forecasts (restricted and unrestricted).

• The optimal weight is obtained by minimizing a loss function that depends on forecasts of out-of-sample data.

• Two types of loss functions (statistical and economic) are adopted to test if no-arbitrage conditions are important on the Ang and Piazzesi (JME 2003) model.
Do No-arbitrage restrictions really matter?

• Ang & Piazzesi (JME, 2003), Favero, Niu & Sala (WP, 2007), Christensen, Diebold & Rudebusch (WP, 2007), and Almeida & Vicente (JBF, 2008) all find that no-arbitrage restrictions improve forecasting ability
 – The first three papers in the context of Gaussian affine DTSMs while the last paper considers Gaussian and Stochastic Volatility affine models.

• Based on a family of Gaussian affine models, Duffee (2008) suggests that imposing no-arbitrage is irrelevant for forecasting.

• All results are model and sample specific (with some robust. tests).

• This paper provides a time-varying measure of the importance of each forecasting candidate:
 – Equivalent to performing multiple robustness tests on studies that adopt RMSE as loss function in the traditional style.
Still on no-arbitrage and forecasting

- It has been shown that no-arbitrage improves forecasting ability on longer forecasting horizons (6m, 12m): Here the test is performed for a one-period (1m) forecasting horizon.

- Also, it appears to be the case that no-arbitrage restrictions are most useful (for forecasting purposes), under more sophisticated models, like those including stochastic volatility.
 - The restrictions improve econometric identification of volatility and market prices of risk.

- Under model misspecification no-arbitrage helps (Duffee (2008)).

- So, maybe no-arbitrage could matter more if those cases are taken into account.
Economic Interpretation: Bond Risk Premia

• The lambdas define the optimal convex combination of forecasts but don't give any explicit information on the risk premium structure of interest rates.

• One idea is to plot the implied market prices of risk of the restricted no-arbitrage version. Are those plausible?

• Market prices might explain why no-arbitrage version is more useful under the portfolio loss function
 – The combination of no-arbitrage with time-varying risk premium probably allows the model to better capture the correlation structure of yields
 – Constant risk premium makes the restricted model too restrictive!

• How to extract bond risk premia from the unrestricted or RW models? Use some exponential spline function. BHR
Statistical x Economic Loss Functions

• The no-arbitrage restrictions appear to be more relevant when the economic loss function is adopted instead of the statistical one.

• Can't it be due to the fact that the particular portfolio loss function is exploring two characteristics that could also appear in a statistical loss function?
 – The correlation structure of the yields on the optimal linear combination? Here all yields appear together.
 – The covariance matrix is re-estimated with a rolling window.
 – What is important: Time variation on the metric (coming from time-varying optimal portfolio weights and covariance matrix) or simply the fact that we consider all yields simultaneously.
Market Practitioners

- So far, the optimal combinations of forecasts (lambdas) are obtained based on out-of-sample data.

- An implementation of a version that attempts to forecast data out-of the sample used to estimate the lambdas would be useful for practitioners.

- These results might depart from the ones that generated lambdas, specially for longer horizon forecasts.
Comparison of Multiple Forecasts?

• In the context of this paper the forecaster faces the decision of choosing between imposing restrictions or not on one forecasting model.

• Now, suppose he also wants to test different econometric techniques to estimate the model (like kalman filtering x inverting the states, QML x Simulated Maximum Likelihood).

• How to proceed?