Discussion of:

"A Stochastic Discount Factor Approach to Asset Pricing Using Panel Data Asymptotics"

by

Fabio Araujo, and Joao Victor Issler

Caio Almeida

Getulio Vargas Foundation

Lubrafin, March 26, 2011
Summary

- New econometric nonparametric estimator of the SDF based on panel-data asymptotic: Araujo Issler (AI) SDF.
- Contribute to a large literature started by Hansen and Jagannathan (HJ, 1991), where nonparametric SDFs are used to diagnose models, test predictability, performance analysis, ...
 - On each state, the AI SDF is proportional to the inverse of the geometric mean of cross sectional returns.
 - Main advantage with respect to HJ and its variations is the simplicity of estimation for a large number of assets. However, ...
 - it comes with a cost of introducing large pricing errors, but not much larger than the errors achieved by previously proposed SDFs.
- Empirical application: Tests of parametric SDFs by projections on their proposed SDF.
Comparisons with the Literature

- The AI nonparametric SDF should be compared to a number of other previously proposed nonparametric/semiparametric SDFs:
 1. Nonparametric Hansen and Jagannathan (1991) linear SDF with positivity constraint, and all its generalizations with conditional variables
 2. Nonlinear SDF by Bansal and Viswanathan (1993) obtained with Logistic Functions

- Most of these SDFs present small/zero pricing errors and are also based on economic theory.
The AI SDF is too smooth: It is not Admissible

- The AI SDF presents high pricing errors, and I believe this is the reason for why the Equity Premium Puzzle disappears!

- An important diagnostic test: See if the SDF is above the HJ variance bound with positivity constraint.
 - As I show below, this is not the case. The sample volatility of the AI SDF (0.0215) is 16 times smaller than the volatility of the HJ SDF with pos. constraint (0.3588)!

- The AI SDF is not useful to test parametric SDFs like the CCAPM by projections since it already does not explain a significant amount of information on returns.

- But it is still a good approximation for an admissible SDF when the number of assets is large.
Robustness of Results: Comparison with HJ with positivity constraint

- HJ propose a linear SDF with positivity constraint that is simple to estimate, if the number of assets is not too large
 - This SDF also introduce pricing errors when the number of priced assets increase.
 - The HJ estimator becomes harder to solve when the number of priced assets increase.

- Therefore, an effective comparison is fundamental to understand the advantages and drawbacks of the new methodology.
 - Extracting the risk-free rate, analyzing the pricing errors from Euler equations, pricing out-of-sample in the panel, etc...

- I compare the AI SDF with the HJ SDF with positivity constraint and with some other SDFs.
Euler Equation Pricing Errors

- SDFs should satisfy the Euler Equation for the returns R:

 $E[mR] = 1$
Comparing SDF’s Shape

- The HJ SDF is much more volatile than the AISDF: 0.3588 \times 0.0215

- The absolute average pricing errors are a bit smaller: 25.6 bp \times 27.3 bp
Comparing SDF’s Shape

- The CR ($\gamma = -0.3$) SDF is more volatile than the AISDF: 0.0877×0.0215

- The absolute average pricing errors are much smaller: $19.9 \text{ bp} \times 27.3 \text{ bp}$
More on Euler Equation Pricing Errors

- SDFs should satisfy the Euler Equation for the returns R:

 $$E[mR] = 1$$
Comparing SDF’s Shape: Much more volatility...

- The CR ($\gamma = 1.5$) SDF is much more volatile than the AISDF: 0.4774×0.0215

- The absolute average pricing errors are smaller: 22.7 bp \times 27.3 bp
Obtaining An Infinity of Positive Semi-parametric SDFs Based on Nonlinear Projections

▶ Almeida and Garcia (2010) solve SDF nonlinear projection problems where the discrepancy functions (distances) are based on members of the Cressie Read family.

▶ Implied SDFs are obtained from the first order conditions of portfolio problems based on HARA utility functions.

▶ The implied SDFs are strictly positive hyperbolic functions of the primitive returns, and admissible, that is, perfectly price the primitive assets:

\[\hat{m}_{MD}(R) = \beta \ast \left(1 + \gamma \hat{\lambda}'_{opt} \left(R - \frac{1}{a} \right) \right)^{\frac{1}{\gamma}} \]

(1)

▶ Include Stutzer (1995) exponential, Growth portfolio SDF by Bansal and Lehman (1997), and HJ (1991) as particular cases
Conclusion

- AI SDF is simple to estimate and presents pricing errors comparable to other well known nonparametric SDFs.

- In particular, it has volatility too small, much smaller than the minimum volatility required for an SDF to be admissible.

- On the other hand, most estimated SDFs, in a context of a large number of assets, are much harder to obtain and also present large pricing errors.

- AI SDF appears to be a particularly promising candidate to give approximately right prices when there is a large set of assets.